535 research outputs found

    Spoiled Onions: Exposing Malicious Tor Exit Relays

    Full text link
    Several hundred Tor exit relays together push more than 1 GiB/s of network traffic. However, it is easy for exit relays to snoop and tamper with anonymised network traffic and as all relays are run by independent volunteers, not all of them are innocuous. In this paper, we seek to expose malicious exit relays and document their actions. First, we monitored the Tor network after developing a fast and modular exit relay scanner. We implemented several scanning modules for detecting common attacks and used them to probe all exit relays over a period of four months. We discovered numerous malicious exit relays engaging in different attacks. To reduce the attack surface users are exposed to, we further discuss the design and implementation of a browser extension patch which fetches and compares suspicious X.509 certificates over independent Tor circuits. Our work makes it possible to continuously monitor Tor exit relays. We are able to detect and thwart many man-in-the-middle attacks which makes the network safer for its users. All our code is available under a free license

    UHE neutrino and cosmic ray emission from GRBs: revising the models and clarifying the cosmic ray-neutrino connection

    Full text link
    Gamma-ray bursts (GRBs) have long been held as one of the most promising sources of ultra-high energy (UHE) neutrinos. The internal shock model of GRB emission posits the joint production of UHE cosmic ray (UHECRs, above 10^8 GeV), photons, and neutrinos, through photohadronic interactions between source photons and magnetically-confined energetic protons, that occur when relativistically-expanding matter shells loaded with baryons collide with one another. While neutrino observations by IceCube have now ruled out the simplest version of the internal shock model, we show that a revised calculation of the emission, together with the consideration of the full photohadronic cross section and other particle physics effects, results in a prediction of the prompt GRB neutrino flux that still lies one order of magnitude below the current upper bounds, as recently exemplified by the results from ANTARES. In addition, we show that by allowing protons to directly escape their magnetic confinement without interacting at the source, we are able to partially decouple the cosmic ray and prompt neutrino emission, which grants the freedom to fit the UHECR observations while respecting the neutrino upper bounds. Finally, we briefly present advances towards pinning down the precise relation between UHECRs and UHE neutrinos, including the baryonic loading required to fit UHECR observations, and we will assess the role that very large volume neutrino telescopes play in this.Comment: 4 pages, 2 figures. To be published in Proceedings of the 6th Very Large Volume Neutrino Telescope Workshop (VLVnT13), Stockholm, Sweden, 5-7 August, 201

    Magnetic Field and Flavor Effects on the Gamma-Ray Burst Neutrino Flux

    Full text link
    We reanalyze the prompt muon neutrino flux from gamma-ray bursts (GRBs), at the example of the often used reference Waxman-Bahcall GRB flux, in terms of the particle physics involved. We first reproduce this reference flux treating synchrotron energy losses of the secondary pions explicitly. Then we include additional neutrino production modes, the neutrinos from muon decays, the magnetic field effects on all secondary species, and flavor mixing with the current parameter uncertainties. We demonstrate that the combination of these effects modifies the shape of the original Waxman-Bahcall GRB flux significantly, and changes the normalization by a factor of three to four. As a consequence, the gamma-ray burst search strategy of neutrino telescopes may be based on the wrong flux shape, and the constraints derived for the GRB neutrino flux, such as the baryonic loading, may in fact be already much stronger than anticipated.Comment: 4 pages, 3 figures. Minor clarifications. Final version to appear in Phys. Rev.

    Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    Full text link
    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.Comment: 55 pages, 23 figures, 1 table. Version accepted for publication in Astroparticle Physics. Main analysis performed with TA data; for plots with HiRes data, see v

    Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts

    Full text link
    Gamma-ray bursts are short-lived, luminous explosions at cosmological distances, thought to originate from relativistic jets launched at the deaths of massive stars. They are among the prime candidates to produce the observed cosmic rays at the highest energies. Recent neutrino data have, however, started to constrain this possibility in the simplest models with only one emission zone. In the classical theory of gamma-ray bursts, it is expected that particles are accelerated at mildly relativistic shocks generated by the collisions of material ejected from a central engine. We consider neutrino and cosmic-ray emission from multiple emission regions since these internal collisions must occur at very different radii, from below the photosphere all the way out to the circumburst medium, as a consequence of the efficient dissipation of kinetic energy. We demonstrate that the different messengers originate from different collision radii, which means that multi-messenger observations open windows for revealing the evolving GRB outflows.Comment: 12 pages, 7 figures. Matches published versio

    How to Bootstrap Anonymous Communication

    Full text link
    We ask whether it is possible to anonymously communicate a large amount of data using only public (non-anonymous) communication together with a small anonymous channel. We think this is a central question in the theory of anonymous communication and to the best of our knowledge this is the first formal study in this direction. To solve this problem, we introduce the concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website (such as cat videos on YouTube or funny memes on 9GAG). Then Lea provides Joe with a short key kk which, when applied to the entire website, recovers the document while hiding the identity of Lea among the large number of users of the website. Our contributions include: - Introducing and formally defining anonymous steganography, - A construction showing that anonymous steganography is possible (which uses recent results in circuits obfuscation), - A lower bound on the number of bits which are needed to bootstrap anonymous communication.Comment: 15 page
    • …
    corecore